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Uncertainty Quantification in Atomistic Simulations 
with Dropout Neural Network Potentials

Mingjian Wen and Ellad Tadmor
AEROSPACE ENGINEERING

& MECHANICS

Objective

Fully connected neural network (NN) potential

Transferability determination

• determine the transferability (i.e. the ability to make appropriate predictions outside the  training set) 
of the potential, i.e. the applicability to new problems of interest

• quantify the uncertainty in potential predictions and propagate the uncertainty to properties of 
interest obtained from atomistic simulations 

Uncertainty in phonon dispersions

Dropout neural network (NN) potential

V(r;✓) =
P

↵ E↵

yji = g

 
X

k

yki�1w
k,j
i + bji

!

E↵ = g(g(y0W1 + b1)W2 + b2)W3 + b3

g : nonlinear function
W , b : parameters

Behler, J. Chem. Phys. 134, 074106, 2011  

Requirement of descriptors: translation, rotation, inversion, and permutation symmetric

yj0 = �j(r)

Symmetry functions

�1(r) =
X

� 6=↵

exp[�⌘(r↵� �R)

2
] · fc(r↵�)

two-body descriptor (bond stretching)

↵

�

�

r↵�

✓�↵�

three-body descriptor (bond bending)

·fc(r↵�) · fc(r↵�) · fc(r��)

�2(r) = 2

1�⇣
X

� 6=↵

X

� 6=↵,�

(1 + � cos ✓�↵�)
⇣
exp[�⌘(r2↵� + r2↵� + r2��)]

Phonon dispersions

• Phonon dispersions for monolayer graphene

• NN potential training set: 

(1) monolayer graphene (stretched, 
compressed, and vacancies)

(2) bilayer graphene (different layer spacing, 
translated, and twisted)

(3) graphite (different layer spacing)

• Fully connected NN potential (Present) 
performs much better than other tested 
physics-motivated potentials (AIREBO, 
LCBOP, and REBO), especially for the high-
frequency optical modes

Problems of fully connected NN potential:

• Low transferability
• Not easy to carry out uncertainty quantification and propagation

E↵ = Ē↵ =
1

P

X

p

Ep
↵Atomic energy:

Uncertainty: �E↵ =

sP
p(E

p
↵ � Ē↵)2

P � 1

• All the same as a fully connected NN 
potential except trained with dropout 
(randomly remove a proportion of 
connections between adjacent layers at 
each training step)

• An NN trained with dropout is 
mathematically equivalent to a Bayesian 
NN

• At predicting stage, in practice, one 
only needs to evaluate the dropout NN 
potential multiple times (each with a 
different realization of the dropout) and 
then obtain the predictive mean and 
uncertainty from these samples

Wen and Tadmor, in preparation; Gal, Ph.D. Thesis, Cambridge University,  2016

(sample average)

(sample standard deviation)

Create a class of interatomic potentials that can be used easily to

!
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descriptors

An NN potential with two hidden layers

!
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Dropout NN
Input
 layer

Hidden
 layer 1

Hidden
 layer 2

Output
 layer

Atomic
 Configuration

rcut

↵

y11

y22

y10

y20

y30

y40

y50

y21

y31

y41 y42

y32

y12

w5,4
1

w4,4
2

w4,1
3

E↵

E↵ = Ē↵ =
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Gal et al, ICML. 2016

Gal, Ph.D. Thesis, Cambridge University,  2016

Dropout training in NN is equivalent to a Bayesian NNA dropout NN potential with two hidden layers (dashed 
arrows indicate dropped connections)

Representations of the 
carbon local atomic 
neighborhoods by UMAP

Potential energy: Uncertainty in atomic energy

• UMAP (uniform manifold 
approximation projection) on local 
neighborhoods of individual atoms 
(i.e. descriptor values of atoms)

• Monolayer, bilayer, and graphite in 
the training set; diamond NOT in 
the training set

• Configurations not in the training 
set (diamond) have much higher 
uncertainty 

Histogram of uncertainty (diamond not in training set )

Histogram of uncertainty (diamond in training set )

A representation of the above 
uncertainty in atomic energy 
(diamond has larger uncertainty 
since it is not in the training 
set)

Uncertainty in stress

Uncertainty in atomic energy of 
diamond decreases once it is 
added to the training set 

Compare the uncertainty in configurations that characterize the problem of interest and the uncertainty 
in the training set to determine the transferability.

sij =
1

V T

TX

t=1

NX

↵=1

r↵i,tf
↵
j,tPotential part of the virial stress:

Direct method:  compute multiple 
samples of the stress (each with a 
different but fixed dropout), and then 
obtain the mean and uncertainty

Indirect method: compute mean and 
uncertainty in the forces, and then 
propagate the uncertainty to the 
stress

V: volume   T: # MD steps   N: # atoms
r: coordinates   f: forces

Potential part of the 11 component of the virial stress in a 
monolayer graphene (red and blue error bar plot), and 
uncertainty in atomic energy (green box plot) at various 
lattice parameters

Training set lattice parameter range: 
[2.40, 2.52] Å

Uncertainty in stress correlates with 
the uncertainty in atomic energy

Uncertainty in a property can be obtained from both the direct method and indirect method. The former 
works for any property, while the latter works when there exists a “simple” relationship between the 
property and energy (or forces). However, the latter is computationally much cheaper. 

• Phonon dispersions for monolayer graphene

• The dashed lines denote predictive mean, and  
the red, green, and blue bands denote 
uncertainty in the phonon frequency; obtained 
using the direct method 

• The results by the dropout NN potential are 
slightly worth than the fully connected NN 
potential, but are still better than REBO; the 
dropout NN potential provides uncertainty in 
the predictions


