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Objective:

The Stillinger-Weber (SW) potential is widely used to describe the interaction in tetrahedral semiconductors, 
such as silicon (Stillinger and Weber, PRB, 1985),  and compounds composed of the major II-VI elements Zn, 
Cd, Hg, S, Se, and Te (Zhou et al, PRB, 2013).  It has also been adapted for 2D materials, such as monolayer 
MoS2 and monolayer black phosphorus (Jiang et al, Nanotechnology, 2015).  The total potential energy of a 
system consisting of N atoms given by the SW potential is:

Stillinger-Weber Potential for MoS2:

Potential predictions (cont.):
• Parameterize a Stillinger-Weber interatomic potential for MoS2 that is able to predict basic material 

properties, such as cohesive energy and lattice constants, with good transferability to properties outside the 
training and testing sets.  

!
• Analyze the sensitivity of the potential to its fitting parameters. If some parameters are not identifiable, 

perform model reduction to simplify the model.

Bounds for observables:

Information-based sensitivity analysis:
where the 2-body interactions are given by

and the 3-body bond angle term is 

Equilibrium lattice constants and bond angles are pre-built into the potential by requiring: 
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Equilibrium structural parameters 
predicted by SIESTA: 
•                       
•                       
•                        
•                        

a = 3.20 Å

b = 3.19 Å
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E✓[t]: expectation of observable t using parameter θ
Std✓[t]: standard deviation of observable t using parameter θ

As an example, consider the expected thickness of the MoS2 sheet:

t

N: number of sulphur atoms in one layer      zitop:  z coordinate of atom i in top layer

left of (*):  0.02011   <   right of (*):  0.03029

Take the parameter            for example:�
Mo-S

The Fisher information matrix (FIM) provides a measure of the information change when the potential 
parameters are perturbed. For Langevin dynamics with a Boltzmann distribution, the FIM can be derived as

Sensitivity of model predictions 
to the fitting parameters

p
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Fitting results and potential predictions: 
Energy versus lattice constant 
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Fitted parameters in 3-body term  

rij = kri � rjkin which                             is the bond length, and βjik is the angle between bonds rij and rik.  Only the bond angles 
of type S-Mo-S and Mo-S-Mo (the middle atom is the vertex) are considered. Both      and      vanish for                . �2 �3 r > rcut
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To test the transferability (accuracy 
away from the training set) of the 
fitted SW potential, we applied it to 
compute the lattice constants and 
stiffness of MoS2, as well as their 
temperature dependence.  The 
results of the new potential (SW-
TT750) are in good agreement with 
first principles results (green).

Force matching:
The potential parameters are optimized using a force-matching method in which the potential forces are 
matched as closely as possible with forces obtained from ab initio molecular dynamics (AIMD) calculations 
using the SIESTA code.  This takes the form of a least-squares problem to minimize the following cost function:

where M is the total number of configurations in the training set, wm is the weight for configuration m (set to 1 
in this work, since all forces are equally important),       is the reference forces from the AIMD training set, and f0

m
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Parameter Mo-Mo Mo-S S-S

3.9781 11.3797 1.1907
0.4446 0.5267 0.9015
2.8529 2.1751 2.8413
5.5466 4.0269 4.5195

         p = 5                 q = 0

Fitted parameters in 2-body term  

A (eV)

� (Å)

B
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Method

SW-TT750 3.19 3.19 15.28 119.2 41.0
SW-Jiang2013 3.09 3.18 12.76 140.8 52.7
SW-Jiang2015 3.11 3.12 3.72 105.0 28.7

REBO 3.17 3.24 21.48 154.4 45.8
SIESTA (GGA) 3.20 3.19 15.90 - -
VASP (GGA) 3.19 3.13 15.21 - -
VASP (GGA) - - - 132.7 33.0
VASP (GGA) - - - 130.0 40.0

a Ding et al, Physica B, 2011      b Cakir et al, APL, 2014      c Copper et al, PRB, 2013

Predictions of material properties

a (Å) b (Å) Ec (eV) C11 (N/m) C12 (N/m)

The predictions of the new SW-TT750 potential are 
in better agreement with first principles (SIESTA) 
results for the energy versus lattice constant than 
other potentials available for MoS2.

is the forces on atoms (with coordinates      ) computed from the potential. The vector     represents the 
potential parameters.
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Fluctuation method

Uncertainty in parameters 
(lower bound of s.d.)  
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The FIM provides an upper bound for the change in the model prediction of any observable t due to parameter 
perturbation        (a sharper version of Pinsker’s inequality, Dupuis et al, J. Uncertainty Quantif., 2016):�✓

It is seen that the bound (*) is satisfied, and the bound appears to be tight.

MoS2 structure 

Two methods are used to compute linear thermal expansion coefficient (LTEC) using molecular dynamics.  
The direct method computes the LTEC from its definition:
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and the fluctuation method relates the LTEC to the covariance of Hamiltonian     and volume V of the system byH

↵L =
1

2kBT 2E[V ]
(E[HV ]� E[H]E[V ]) ,

where        is the expectation, kB is Boltzmann’s constant, and T is the temperature. E[·]

Future work:
• Incorporateinformation-based sensitivity analysis into a general framework for interatomic potential fitting 

that is being developed, and use this framework to fit parametric potential models for 2D materials and 
heterostructures.  

!
• Develop machine learning based nonparametric potential models for 2D materials and heterostructures, such 

as Neural Network and GPR models. 

The inverse of the FIM provides a lower bound on the covariance of any unbiased estimator     for the 
parameters (Cramér-Rao inequality):
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where η is the damping coefficient in the equations of motion. 

The diagonal elements of the FIM and its inverse provide information on model sensitivity and uncertainty:
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Curve fit is 
performed using 
Gaussian Process 
Regression (GPR).
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